4,153 research outputs found

    Neutral color-spin locking phase in neutron stars

    Get PDF
    We present results for the spin-1 color-spin locking phase (CSL) using a NJL-type model in two flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ~1 MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.Comment: 3 pages, 4 figures, contribution talk to the IVth International Conference on Quarks and Nuclear Physics(QNP06), Madrid, Spain, 5-10 Jun 200

    Counterfactual reasoning for regretted situations involving controllable versus uncontrollable events: The modulating role of contingent self-esteem

    Get PDF
    We report a study that examined the modulating impact of contingent self-esteem on regret intensity for regretted outcomes associated with controllable versus uncontrollable events. The Contingent Self-Esteem Scale (e.g., Kernis & Goldman, 2006) was used to assess the extent to which a person’s sense of self-worth is based on self and others’ expectations. We found that there was an influence of self-esteem contingency for controllable but not for uncontrollable regret types. For controllable regret types individuals with a high contingent (i.e., unstable) self-esteem reported greater regret intensity than those with a low contingent (i.e., stable) self-esteem. We interpret this finding as reflecting a functional and adaptive role of high contingent self-esteem in terms of mobilizing the application of counterfactual reasoning and planning mechanisms that can enable personal expectations to be achieved in the future

    Illuminating Dense Quark Matter

    Get PDF
    We imagine shining light on a lump of cold dense quark matter, in the CFL phase and therefore a transparent insulator. We calculate the angles of reflection and refraction, and the intensity of the reflected and refracted light. Although the only potentially observable context for this phenomenon (reflection of light from and refraction of light through an illuminated quark star) is unlikely to be realized, our calculation casts new light on the old idea that confinement makes the QCD vacuum behave as if filled with a condensate of color-magnetic monopoles.Comment: 4 pages, 1 figur

    Quark matter in compact stars?

    Full text link
    Ozel, in a recent reanalysis of EXO 0748-676 observational data (astro-ph/0605106), concluded that quark matter probably does not exist in the center of compact stars. We show that the data is actually consistent with the presence of quark matter in compact stars.Comment: 4 pages, LaTeX; New title and overall rewrite to reflect version published in Nature. Conclusions unchange

    Self-consistent parametrization of the two-flavor isotropic color-superconducting ground state

    Get PDF
    Lack of Lorentz invariance of QCD at finite quark chemical potential in general implies the need of Lorentz non-invariant condensates for the self-consistent description of the color-superconducting ground state. Moreover, the spontaneous breakdown of color SU(3) in this state naturally leads to the existence of SU(3) non-invariant non-superconducting expectation values. We illustrate these observations by analyzing the properties of an effective 2-flavor Nambu-Jona-Lasinio type Lagrangian and discuss the possibility of color-superconducting states with effectively gapless fermionic excitations. It turns out that the effect of condensates so far neglected can yield new interesting phenomena.Comment: 16 pages, 3 figure

    Controlled Ecological Life Support System: Use of Higher Plants

    Get PDF
    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species

    Dense quark matter in compact stars

    Full text link
    The densest predicted state of matter is colour-superconducting quark matter, in which quarks near the Fermi surface form a condensate of Cooper pairs. This form of matter may well exist in the core of compact stars, and the search for signatures of its presence is an ongoing enterprise. Using a bag model of quark matter, I discuss the effects of colour superconductivity on the mass-radius relationship of compact stars, showing that colour superconducting quark matter can occur in compact stars at values of the bag constant where ordinary quark matter would not be allowed. The resultant ``hybrid'' stars with colour superconducting quark matter interior and nuclear matter surface have masses in the range 1.3-1.6 Msolar and radii 8-11 km. Once perturbative corrections are included, quark matter can show a mass-radius relationship very similar to that of nuclear matter, and the mass of a hybrid star can reach 1.8 \Msolar.Comment: 11 pages, for proceedings of SQM 2003 conference; references added, abstract reworde

    Spin-one color superconductivity in compact stars?- an analysis within NJL-type models

    Full text link
    We present results of a microscopic calculation using NJL-type model of possible spin-one pairings in two flavor quark matter for applications in compact star phenomenology. We focus on the color-spin locking phase (CSL) in which all quarks pair in a symmetric way, in which color and spin states are locked. The CSL condensate is particularly interesting for compact star applications since it is flavor symmetric and could easily satisfy charge neutrality. Moreover, the fact that in this phase all quarks are gapped might help to suppress the direct Urca process, consistent with cooling models. The order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but their also small critical temperatures (T_c ~800 keV) could be relevant in the late stages neutron star evolution, when the temperature falls below this value and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", London, 24-28. April 200

    Mass-Induced Crystalline Color Superconductivity

    Get PDF
    We demonstrate that crystalline color superconductivity may arise as a result of pairing between massless quarks and quarks with nonzero mass m_s. Previous analyses of this phase of cold dense quark matter have all utilized a chemical potential difference \delta\mu to favor crystalline color superconductivity over ordinary BCS pairing. In any context in which crystalline color superconductivity occurs in nature, however, it will be m_s-induced. The effect of m_s is qualitatively different from that of \delta\mu in one crucial respect: m_s depresses the value of the BCS gap \Delta_0 whereas \delta\mu leaves \Delta_0 unchanged. This effect in the BCS phase must be taken into account before m_s-induced and \delta\mu-induced crystalline color superconductivity can sensibly be compared.Comment: 12 pages, 4 figures. v2: very small change onl

    Gluons, tadpoles, and color neutrality in a two-flavor color superconductor

    Full text link
    Considering cold, dense quark matter with two massless quark flavors, we demonstrate how, in a self-consistent calculation in the framework of QCD, the condensation of Cooper pairs induces a non-vanishing background color field. This background color field has precisely the right magnitude to cancel tadpole contributions and thus ensures overall color neutrality of the two-flavor color superconductor.Comment: 10 pages, contribution to the proceedings of the Erice school "Heavy-Ion Collisions from Nuclear to Quark Matter" 200
    • …
    corecore